CXCL12 promotes the stabilization of atherosclerotic lesions mediated by smooth muscle progenitor cells in Apoe-deficient mice.
نویسندگان
چکیده
OBJECTIVE Unstable atherosclerotic lesions are prone to rupture, which leads to atherothrombosis. Chemokine (C-X-C motif) ligand 12 (CXCL12) promotes the mobilization and neointimal recruitment of smooth muscle progenitor cells (SPCs), and thereby mediates vascular repair. Moreover, treatment with SPCs stabilizes atherosclerotic lesions in mice. We investigated the role of CXCL12 in the treatment of unstable atherosclerotic lesions. APPROACH AND RESULTS Intravenous injection of CXCL12 selectively increased the level of Sca1(+)Lin platelet derived growth factor receptor-β(+) SPCs in the circulation as determined by flow cytometry. Macrophage-rich lesions were induced by partial ligation of the carotid artery in Apoe(-/-) mice. Repeated injection of CXCL12 reduced the macrophage content, increased the number of smooth muscle cells, increased the fibrous cap thickness, and increased the collagen content in these lesions. However, CXCL12 did not alter the lesion size or the luminal diameter of the carotid artery as determined by planimetry and micro-computed tomography, respectively. Recruitment of bone marrow-derived SPCs to the lesions was increased after treatment with CXCL12 in chimeric mice that expressed SM22-LacZ in bone marrow cells as determined by quantification of the number of lesional β-galactosidase-expressing cells. CXCL12 expression was upregulated in atherosclerotic arteries after CXCL12 treatment. Silencing of arterial CXCL12 expression during atherosclerosis promoted lesion formation and reduced the lesional smooth muscle cell content in CXCL12-treated mice. CONCLUSIONS Systemic treatment with CXCL12 promotes a more stable atherosclerotic lesion phenotype and enhances the accumulation of SPCs in these lesions without promoting atherosclerosis. Thus, CXCL12-induced SPC mobilization appears a promising approach to treat unstable atherosclerosis.
منابع مشابه
Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice.
Recent evidence indicates that vascular progenitor cells may be the source of smooth muscle cells (SMCs) that accumulate in atherosclerotic lesions, but the origin of these progenitor cells is unknown. To explore the possibility of vascular progenitor cells existing in adults, a variety of tissues from ApoE-deficient mice were extensively examined. Immunohistochemical staining revealed that the...
متن کاملNpp1 promotes atherosclerosis in ApoE knockout mice
Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) generates inorganic pyrophosphate (PP(i)), a physiologic inhibitor of hydroxyapatite deposition. In a previous study, we found NPP1 expression to be inversely correlated with the degree of atherosclerotic plaque calcification. Moreover, function-impairing mutations of ENPP1, the gene encoding for NPP1, are associated with severe, artery...
متن کاملRapid regression of atherosclerosis induced by liver-directed gene transfer of ApoE in ApoE-deficient mice.
Apolipoprotein E (apoE) is a multifunctional protein synthesized by the liver and tissue macrophages. ApoE-deficient mice have severe hyperlipidemia and develop accelerated atherosclerosis on a chow diet. Both liver-derived and macrophage-derived apoEs have been shown to reduce plasma lipoprotein levels and slow the progression of atherosclerosis in apoE-deficient mice, but regression of athero...
متن کاملIGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice.
OBJECTIVE Whereas growth factors, via their ability to stimulate vascular smooth muscle cell (VSMC) proliferation and migration, have been thought to play a permissive role in atherosclerosis initiation and progression, the role of insulin-like growth factor-1 (IGF-1) is unknown. Here we report for the first time that IGF-1 infusion decreased atherosclerotic plaque progression in ApoE-deficient...
متن کاملA Deficiency of Herp, an Endoplasmic Reticulum Stress Protein, Suppresses Atherosclerosis in ApoE Knockout Mice by Attenuating Inflammatory Responses
Herp was originally identified as an endoplasmic reticulum (ER) stress protein in vascular endothelial cells. ER stress is induced in atherosclerotic lesions, but it is not known whether Herp plays any role in the development of atherosclerosis. To address this question, we generated Herp- and apolipoprotein E (apoE)-deficient mice (Herp(-/-); apoE(-/-) mice) by crossbreeding Herp(-/-) mice and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2013